6,552 research outputs found

    The effects of particle loading on turbulence structure and modelling

    Get PDF
    The objective of the present research was to extend the Direct Numerical Simulation (DNS) approach to particle-laden turbulent flows using a simple model of particle/flow interaction. The program addressed the simplest type of flow, homogeneous, isotropic turbulence, and examined interactions between the particles and gas phase turbulence. The specific range of problems examined include those in which the particle is much smaller than the smallest length scales of the turbulence yet heavy enough to slip relative to the flow. The particle mass loading is large enough to have a significant impact on the turbulence, while the volume loading was small enough such that particle-particle interactions could be neglected. Therefore, these simulations are relevant to practical problems involving small, dense particles conveyed by turbulent gas flows at moderate loadings. A sample of the results illustrating modifications of the particle concentration field caused by the turbulence structure is presented and attenuation of turbulence by the particle cloud is also illustrated

    A Weak Gravitational Lensing Analysis of Abell 2390

    Full text link
    We report on the detection of dark matter in the cluster Abell 2390 using the weak gravitational distortion of background galaxies. We find that the cluster light and total mass distributions are quite similar over an angular scale of \simeq 7^\prime \;(1 \Mpc). The cluster galaxy and mass distributions are centered on the cluster cD galaxy and exhibit elliptical isocontours in the central \simeq 2^\prime \; (280 \kpc). The major axis of the ellipticity is aligned with the direction defined by the cluster cD and a ``straight arc'' located ≃38′′\simeq 38^{\prime\prime} to the northwest. We determined the radial mass-to-light profile for this cluster and found a constant value of (320±90)h  M⊙/L⊙V(320 \pm 90) h\; M_\odot/L_{\odot V}, which is consistent with other published determinations. We also compared our weak lensing azimuthally averaged radial mass profile with a spherical mass model proposed by the CNOC group on the basis of their detailed dynamical study of the cluster. We find good agreement between the two profiles, although there are weak indications that the CNOC density profile may be falling more steeply for θ≥3′\theta\geq 3^\prime (420\kpc).Comment: 14 pages, latex file. Postscript file and one additional figure are available at ftp://magicbean.berkeley.edu/pub/squires/a2390/massandlight.ps.g

    Magnetic spectrum of the two-dimensional antiferromagnet La2CoO4 studied by inelastic neutron scattering

    Full text link
    We report measurements of the magnetic excitation spectrum of the layered antiferromagnet La2CoO4 by time-of-flight neutron inelastic scattering. In the energy range probed in our experiments (0-250 meV) the magnetic spectrum consists of spin-wave modes with strong in-plane dispersion extending up to 60 meV, and a nearly dispersionless peak at 190 meV. The spin-wave modes exhibit a small (~1 meV) dispersion along the magnetic zone boundary. We show that the magnetic spectrum can be described very well by a model of a Heisenberg antiferromagnet that includes the full spin and orbital degrees of freedom of Co2+ in an axially-distorted crystal field. The collective magnetic dynamics are found to be controlled by dominant nearest-neighbour exchange interactions, strong XY-like single-ion anisotropy and a substantial unquenched orbital angular momentum.Comment: 8 pages, 7 figure

    The Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey. I. The Survey Design and First Results on CL 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82

    Get PDF
    We present the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 h^(–1)_70 Mpc around 20 well-known clusters at redshifts of 0.6 < z < 1.3. The goal of the survey is to examine a statistical sample of dynamically active clusters and large-scale structures in order to quantify galaxy properties over the full range of local and global environments. We describe the survey design, the cluster sample, and our extensive observational data covering at least 25' around each target cluster. We use adaptively smoothed red galaxy density maps from our wide-field optical imaging to identify candidate groups/clusters and intermediate-density large-scale filaments/walls in each cluster field. Because photometric techniques (such as photometric redshifts, statistical overdensities, and richness estimates) can be highly uncertain, the crucial component of this survey is the unprecedented amount of spectroscopic coverage. We are using the wide-field, multiobject spectroscopic capabilities of the Deep Multiobject Imaging Spectrograph to obtain 100-200+ confirmed cluster members in each field. Our survey has already discovered the Cl 1604 supercluster at z ≈ 0.9, a structure which contains at least eight groups and clusters and spans 13 Mpc × 100 Mpc. Here, we present the results on the large-scale environments of two additional clusters, Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82, which highlight the diversity of global properties at these redshifts. The optically selected Cl 0023+0423 is a four-way group-group merger with constituent groups having measured velocity dispersions between 206 and 479 km s^–1. The galaxy population is dominated by blue, star-forming galaxies, with 80% of the confirmed members showing [O II] emission. The strength of the Hδ line in a composite spectrum of 138 members indicates a substantial contribution from recent starbursts to the overall galaxy population. In contrast, the X-ray-selected RX J1821.6+6827 is a largely isolated, massive cluster with a measured velocity dispersion of 926 ± 77 km s^(–1). The cluster exhibits a well-defined red sequence with a large quiescent galaxy population. The results from these two targets, along with preliminary findings on other ORELSE clusters, suggest that optical selection may be more effective than X-ray surveys at detecting less-evolved, dynamically active systems at these redshifts

    Interferometric scattering enables fluorescence-free electrokinetic trapping of single nanoparticles in free solution

    Full text link
    Anti-Brownian traps confine single particles in free solution by closed-loop feedback forces that directly counteract Brownian motion. The extended-duration measurement of trapped objects allows detailed characterization of photophysical and transport properties, as well as observation of infrequent or rare dynamics. However, this approach has been generally limited to particles that can be tracked by fluorescent emission. Here we present the Interferometric Scattering Anti-Brownian ELectrokinetic trap (ISABEL trap), which uses interferometric scattering rather than fluorescence to monitor particle position. By decoupling the ability to track (and therefore trap) a particle from collection of its spectroscopic data, the ISABEL trap enables confinement and extended study of single particles that do not fluoresce, that only weakly fluoresce, or which exhibit intermittent fluorescence or photobleaching. This new technique significantly expands the range of nanoscale objects that may be investigated at the single-particle level in free solution.Comment: Manuscript and SI; videos available upon reques

    Investigating heuristic evaluation as a methodology for evaluating pedagogical software: An analysis employing three case studies

    Get PDF
    This paper looks specifically at how to develop light weight methods of evaluating pedagogically motivated software. Whilst we value traditional usability testing methods this paper will look at how Heuristic Evaluation can be used as both a driving force of Software Engineering Iterative Refinement and end of project Evaluation. We present three case studies in the area of Pedagogical Software and show how we have used this technique in a variety of ways. The paper presents results and reflections on what we have learned. We conclude with a discussion on how this technique might inform on the latest developments on delivery of distance learning. © 2014 Springer International Publishing

    Access to Capital: Milwaukee's Continuing Small Business Lending Gaps

    Get PDF
    This study provides a detailed review of small business lending in Milwaukee, Wisconsin and illustrates how this new data set can be utilized to assess small business lending in virtually any local market. Milwaukee is a fairly typical industrial community that has been hit hard by decades of disinvestment but which also has been the location of many successful community reinvestment initiatives in recent years (Squires and O'Connor 2001). Previous research found that among the nation's fifty largest metropolitan areas Milwaukee had the smallest share of small business loans going to low- and moderate-income areas (Norman 1998). Lending to small businesses, that is firms with assets below $1 million, was also found to be below nationwide levels. Small business lending has also been concentrated in white communities with black and Hispanic communities receiving relatively small shares of such loans and loan dollars. But lenders vary dramatically in Milwaukee in terms of the distribution of their small business loans by neighborhood income level (Squires and O'Connor 1999). This study examines changes in small business lending patterns in Milwaukee between 1996, when these data first became available, and 1999, the most recent data that are available
    • …
    corecore